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Abstract—Hawkes processes are widely used for modeling
event cascades. However, content and cross-domain information
which is also instrumental in modeling is usually neglected. In
this paper, we propose a novel model called transfer Hybrid
Least Square for Hawkes (trHLSH) that incorporates Hawkes
processes with content and cross-domain information. We
also present the effective learning algorithm for the model.
Evaluation on both synthetic and real-world datasets demon-
strates that the proposed model can jointly learn knowledge
from temporal, content and cross-domain information, and
has better performance in terms of network recovery and
prediction.

Keywords-Hawkes processes, transfer learning, event cas-
cades

I. INTRODUCTION

Hawkes processes [1] are widely used to model com-
plicated event sequences produced from natural and social
systems. Hawkes processes can capture both individual and
interactive behaviors, and have achieved satisfactory results
in a variety of disciplines, such as Finance [2], Seismology
[3], and Neurophysiology [4]. Hawkes process is a data-
driven model for social network analysis, which is compe-
tent for dealing with the ubiquitous data regime in social
networks called event cascades, or asynchronous event se-
quences1. A cascade implies a successive process consisting
of a series of events. In social network services, events
refer to daily online behaviors such as posting, commenting,
retweeting or sharing. Event cascades can be epitomized by
timelines. Generally, there exists certain triggering pattern
among events. Information in social networks regularly
disseminates in such a way that one event triggers a series of
responses from other users. For example, when a meme goes
viral in social networks, users see posts from each other,
get intrigued, and comment or share. Hawkes processes
have witnessed many successes in handling event cascades
leveraging temporal information in them with applications
in network structure recovery [5], community detection [6],
recommendation [7], etc.

Although Hawkes processes cater to the need for deal-
ing with temporal information from event cascades and
have achieved satisfactory results, some content information,

1In this paper, these two terms are interchangeable.

which is also conducive to improving accuracy and robust-
ness for various tasks, should also be taken into account. In
this case Hawkes processes can be applied to capture the
mutual influence. Neglecting content information, Hawkes
model may be deceived. Therefore a more accurate model
that can effectively incorporate content information is on
demand.

Besides content information, cross-domain2 knowledge
can also be beneficial. For example in the cold-start problem,
suppose we would like to build recommender systems for the
e-commerce start-ups, but we do not have adequate data on
hand. In this case, we can use data from mature businesses
like Amazon and transfer the knowledge across platforms.
Similar application scenarios are commonly encountered.
Recently, transfer learning [8], which has been a topic of
active interest, sheds light on how to exploit the knowledge
from other domains and help improve the performance of
models. However to the best of our knowledge, none of the
existing works have explored transfer learning for Hawkes
processes.

In this paper, we investigate the idea of augmenting
Hawkes processes with both content and cross-domain in-
formation, and we propose a novel model called transfer
Hybrid Least Square for Hawkes (trHLSH). The trHLSH is
based on the least square estimation of Hawkes and auto-
regression of feature vectors. A regularizer term is added to
control that estimation of parameters on the target domain
will not deviate too much from those on the source domain.
The model captures all of the three aforementioned types of
information:

• temporal information of event cascades;
• event content information;
• cross-domain knowledge.

The noteworthy novelties and contributions of this paper
can be summarized as follows:

• To the best of our knowledge, the model we propose
is the first attempt to deal with temporal and content
information, as well as cross-domain transfer simulta-
neously.

2This is a concept that is widely used in the studies of transfer learning.
We give the definition in Section III-D.



• We test our model on the data crawled from Facebook
and Twitter. The experimental results on both synthetic
and real-world data demonstrate the superiority of our
model in terms of parameter recovery and prediction.

The rest of the paper is organized as follows. Section
II gives a general overview of related works. Section III
presents some fundamental knowledge and defines the nota-
tions that are used later. Section IV discusses our proposed
model and its learning algorithm. Section V reports the
experimental results. Finally, Section VI concludes the paper.

II. RELATED WORKS

Hawkes processes have been attracting increasing at-
tention in academia recently. These models generally fo-
cus on recovering the hidden network of social influence,
which is represented by the infectivity parameter α’s, from
the observable asynchronous event sequences, or so-called
Granger causality. [9] proposes a convex optimization ap-
proach to discover the hidden network based on regularized
Hawkes processes which can capture low-rank and sparse
structure on network topology. [10] replaces the decay
kernels κ(t) with a sparse log Gaussian Cox process in order
to mimic the mutual influences. They also present a fully-
Bayesian, parallel inference algorithm by using the Poisson
superposition principle. [11] introduces an effective method
using a series of decay kernels instead of one and recovers
the Granger causality graph via group sparsity. However,
almost all of these models regarding Hawkes processes
just utilize the temporal information and the corresponding
content information is neglected.

Besides, there are some explorations in the context of nat-
ural language processing. [12] addresses diffusion network
inference and meme tracking via viral Twitter texts. The
proposed model considers content information for network
recovery. Dirichlet-Hawkes Processes proposed in [13] takes
into account both textual contents and temporal information
with application to clustering document streams. The model
can recover both topics and temporal dynamics. [14] pro-
poses a clustering method for asynchronous event sequences
using a Dirichlet mixture model. None of the above works,
however, discussed incorporating cross-domain information.
Explorations on combining Hawkes processes and transfer
learning are lacking. To the best of our knowledge, this paper
is the first attempt along this line.

III. PRELIMINARIES

A. Notations

To facilitate the subsequent discussion, frequently used
symbols and their definitions are listed in Table I. Note that
we refer to the nodes in social networks or any entities
that generate events as users. Each user is represented as
a dimension in multi-dimensional Hawkes processes.

Table I
TABLE OF NOTATIONS

Symbol Description

tik ∈ [0, T ]
Time of the k-th event occurring in the
i-th dimension, during the observation
window [0, T ].

f i
k ∈ Rd d-dimensional event feature corre-

sponding to tik .

ni ∈ N+, n =
∑

i=1 n
i

Total number of events that occur in the
i-th dimension. n is the sum over all
dimensions.

M Total number of dimensions or users.

N(t) = {N i(t)}Mi=1
M -dimensional counting precess, or
specifically refers to Hawkes process.

λi(t)
Conditional intensity function of user i.
Without otherwise stated, the intensity
function is conditioned on history H−.

τ i(f |t) Conditional probability density func-
tion of feature vector given time t.

µi ∈ R+

Base intensity of the i-th dimension
which controls the probability of immi-
grants arrival.

αij ∈ R+ ∪ {0}
Infectivity parameter that determines
the influence on the i-th user from the
j-th user.

κ(t|βij)
Kernel function with parameter βij ∈
R+ which parameterizes decay of in-
fection w.r.t. time.

ST ,SS

Event sequences (including timestamps
and features) of target and source do-
main, respectively.

B. Hawkes Processes

Hawkes processes [1], a class of point processes, are
essentially multi-dimensional nonhomogeneous Poisson pro-
cesses, which traditionally play a central role in model-
ing the self- and mutually exciting behavior of events. A
Hawkes process N(t) is characterized by its conditional
intensity function λ(t|Ht−). A M -dimensional Hawkes pro-
cess N(t), t ∈ [0, T ] is given by the intensities λi(t), i =
1, . . . ,M , as follows,

λi(t) = µi +

M∑
j=1

∑
k

αijκ(t− tjk|β
ij). (1)

Here and hereafter we use λ(t) instead of λ(t|Ht−) for
abbreviation unless otherwise stated. µi ∈ R+ is the base
intensity of the i-th dimension. αij ∈ R+ is called infectivity
pamameter. It measures the influence on the i-th user from
the j-th user. M is the dimensionality. tjk ∈ [0, T ] is the
timestamp recording the k-th event of those happening in
the j-th dimension. κ(t) is the decay kernel function with
bandwidth βij . It is worth noting that the overwhelming
majority of existing works assume µi’s and αij’s are pos-
itive as we do, which means only excitation is considered.
Recently some study such as [15] allows inhibition through
negative valued αij’s. Choices of kernel functions include
but are not limited to exponential kernel, Gaussian kernel,
power-law kernel and Rayleigh kernel. In this study, we use



exponential kernel throughout.

C. Least Square Estimator

The least square estimator for nonhomogeneous Poisson
process is a special case of a wide class of estimators,
namely M-estimators as explained in [16]. The objective is
to minimize the product of conditional intensity function and
its deviation from the actual sample of the process Ñ i:

min

∫ T

0

λi(t)
(
λi(t)dt− dÑ i(t)

)
. (2)

Note that maximum likelihood estimator also belongs to the
class of M-estimators. However in the case of Hawkes pro-
cess, maximum likelihood estimator is more computationally
difficult than least square estimator. It cannot result in a
“one-step” solution as least square estimator does. Least
square estimator can also give satisfactory final estimates
from the same asymptotic distribution as maximum likeli-
hood estimators do [16]. Therefore we adopt least square
estimator as the starting point of our model trHLSH, which
is discussed later.

For convenience we introduce notations:

θi =
(
µi, αi1, αi2, . . . , αiM

)′
, (3)

xi(t)=

(
1,
∑
k

κ(t− t1k|β), . . . ,
∑
k′

κ(t− tMk′ |β)

)′
. (4)

The intensity function λi(t) as shown in Eq.(1) can be
recasted as the sum of: θi, the parameter vector to be
inferred, and xi(t), the kernel sum vector. Applying the
notations, Eq.(2) is equivalent to:

min
θi

∫ T

0

θ′ixi(t)xi(t)
′θidt− 2

∫ T

0

θ′ixi(t)dÑ
i(t). (5)

Let

Zi =

∫ T

0

xi(t)xi(t)
′dt, (6)

and

yi =

∫ T

0

xi(t)dÑ
i(t) =

∑
tik

xi(t
i
k). (7)

The objective function becomes,

min
θ

θ′Zθ − 2θ′y

s.t. θ > 0
(8)

Here the subscript denoting the dimension i is omitted. This
optimization problem can be directly solved by quadratic
programming.

D. Transfer Learning

Transfer learning [8] aims to transfer knowledge from
one domain (called the source domain) to help the tasks
of another domain (called the target domain). Typically,
the source and target domains are related in the sense that
they share some common knowledge which can be trans-
ferred across domains. Based on the knowledge transferred,
transfer learning is categorized into the feature-based one,
the instance-based one, and the parameter-based one. In
this paper, we focus on the parameter transfer, which is
to discover the relationship of parameters, between two
different Hawkes processes. Specifically, in the experiments
on real-world data, we use the event sequences from Twitter
as source domain and those from Facebook as target domain.
We assume that the network structures of both domains
are similar and transferable. Therefore in the proposed
model, the knowledge we transfer is actually the infectivity
parameter α’s, which describe the network structure.

IV. THE PROPOSED MODEL

In this section we present the proposed model and its
learning algorithm.

A. Leveraging Content Information

In Section III-C we describe the least square estimator
for Hawkes process that models temporal information. Now
we illustrate an auto-regression model for incorporating the
content information. For an event which occurs at t, its
content can be represented as a feature vector f(t), or f i

k

corresponding to tik, via feature embedding. Assume content
and time are independent, and f i(t) can be defined by all
the events (with their contents) that happen prior to t as,

f i(t) =

M∑
j=1

1

N j(t)

Nj(t)∑
k=1

wij
k f

j
Nj(t)+1−k + wi

01 + ε, (9)

where wij
k is the regression coefficient, wi

0 the intercept
and ε the Gaussian noise. 1 is a vector with each entry
one. The intuition behind is what you may post depends
on what you have read. The content is modeled as a linear
combination of the historical events. However the number
of coefficients equals to the total number of events, which
makes the estimation intractable as a result of the short
rank of the design matrix. Therefore we assume that all the
features of the same dimension share the same coefficient.
Under this assumption, Eq.(9) becomes,

f i(t) =

M∑
j=1

wij

N j(t)

Nj(t)∑
k=1

f j
k + wi

01 + ε, (10)

The least square estimation for wij is,

min
wij

M∑
i=1

ni∑
k=1

∥∥∥∥∥∥f i
k−

M∑
j=1

1

N j(tik)

Nj(tik)∑
k′=1

wijf j
k′−w

i
01

∥∥∥∥∥∥
2

2

. (11)



Let

F i
k=

1,
1

N1(tik)

N1(tik)∑
k′=1

f j
k′ , . . . ,

1

NM (t)

NM (tik)∑
k′=1

f j
k′

 , (12)

wi =
(
wi

0, w
i1, . . . , wiM

)′
, (13)

Ψi =

ni∑
k=1

(
F i

k

)′
F i

k, (14)

φi =

ni∑
k=1

(
F i

k

)′
f i
k. (15)

Eq.(11) can be rewritten as an optimization problem,

min
w

w′Ψw − 2w′φ. (16)

Here the superscript i is also omitted.

B. Hybrid Least Square for Hawkes (HLSH)

Note that αij quantifies the influence from dimension j to
i which is inferred by temporal information. Symmetrically
wij also reflects the influence from dimension j to i which
is, however, inferred by the content information. Since αij

and wij both reflect the network structure, they should be
similar. Therefore we impose a L2 norm regularizer of
θ − w. Combining Eq.(8) and Eq.(16), now we have the
objective function of HLSH:

min
θ,w

θ′Zθ−2θ′y+η1 (w′Ψw−2w′φ)+η2 ‖θ−w‖22 ,

s.t. θ > 0.
(17)

where η1 and η2 are hyperparameters of the regularizations.

C. Transfer HLSH

We now take into account cross-domain knowledge for
augmenting the HLSH model. The objective function is
formulated as,

min
θT ,wT

θ′TZθT − 2θ′Ty+η1 (w
′
TΨwT − 2w′Tφ)+

η2 ‖θT−wT ‖22+η3 ‖θT−θS‖
2
2+η4 ‖wT−wS‖22 ,

s.t. θT > 0.
(18)

Here θS andwS are the parameters that are pre-learned from
the source domain by HLSH. The last three regularization
terms and their meanings are:
• ‖θT −wT ‖22: constraint on similarity of the network

structure learned from temporal and content informa-
tion;

• ‖θT − θS‖22 and ‖wT −wS‖22: constraints on similar-
ity of the parameters learned from the target and source
domains.

Algorithm 1 presents the procedure of the learning algo-
rithm above.

Algorithm 1: trHLSH: Transfer Hybrid Least Square
for Hawkes

input : SS ,ST , η1, η′1, η2, η′2, η3, η4, κ(·)
output: θS , θT , wS , wT

1 Calculate ZS , yS , ΨS , φS , ZT , yT , ΨT , φT by
Eq.(7), (6), (14), (15);

2 Calculate θS and wS using η′1, η′2 and Eq.(17);
3 Calculate θT and wT using η1, η2, η3, η4 and

Eq.(18);
4 return θS , θT , wS , wT .

V. EXPERIMENTS

A. Synthetic Data

We first test our model on synthetic data in terms of the
performance of parameter recovery. Then we test on real-
world data in terms of prediction.

We follow the method for generating synthetic data used
in [10]. First, we generate a 10-dimensional Erdös-Rényi
graph with sparsity parameter ρ as the adjacency matrix
for target domain. If there is an edge, then we generate a
weight from a uniform distribution. The weighted adjacency
matrix is the α’s (infectivity matrix) we use in Hawkes
process. Before generating event cascades, the stability con-
dition is checked [17] such that the simulation does not
lead to infinite numbers of events. Then we randomly add
or remove edges in the Erdös-Rényi graph that we have
generated at the first step with a small probability as the
adjacency matrix for source domain and we generate a new
weight for each newly-added edge. We use similarity
to describe how many edges are the same in both adjacency
matrices of source and target domains. Next we generate
base intensities µ’s uniformly. We adopt exponential kernels
and set β = 1. After all the parameters needed are prepared,
we apply the thinning algorithm [18] and branching structure
[19] to simulate two event cascades for source and target do-
mains respectively. Time ratio of observation windows
measures how much more information is in source domain
than in target domain. We fix the observation window of
target domain as 60, and change that of source domain
accordingly. Note that in the brunching structure, the parent
event can be indicated. When an event triggers an offspring,
the corresponding feature vector is generated from Gaussian
distribution with the parent feature vector as the mean.
Feature bandwidth is the variance parameter for the
Gaussian distribution, which controls how alike the feature
vectors are between generations. For each experiment, we
generate 50 different samples and apply the proposed models
to obtain the estimation of infectivity parameter α’s. The
performance results reported are the average over all the 50
runs.

The evaluation metrics we use in parameter recovery are:
• RMSE: the root-mean-square error of α’s.
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Figure 1. Performance on synthetic data.

• Accuracy: the percentage of edges that are cor-
rectly predicted by the estimated adjacency matrix. It
measures the accuracy of the prediction of adjacency
matrices. The estimated adjacency matrix is obtained
by bisecting the infectivity matrix with a designated
threshold. That is, if α is larger than the threshold, we
regard it as an edge.

A lower RMSE and a higher accuracy indicate better
performance for parameter recovery.

We involve 4 models for comparison:
• LS(time). The original Hawkes process. Only tem-

poral information is used.
• HLSH(time+content). This method utilizes both

temporal and content information.
• trLS(time+transfer). The trLS algorithm is to

set η1 = 0, η2 = 0, η4 = 0 in Algorithm 1. The method
utilizes both temporal and cross-domain information,
but not content information.

• trHLSH(time+content+transfer). This
method is shown in Algorithm 1, which leverages all
of temporal, cross-domain and content information.

Fig. 1 shows the performance of the 4 models when
varying sparsity, similarity, time ratio and
feature bandwidth. Fig.1(a) and 1(e) show how spar-
sity affects performance. Fig.1(b) and 1(f) demonstrate that
the more informative source domain is, the more help-
ful transfer will be. Fig.1(c) and 1(g) illustrate how the
similarity of the networks of source and target domains
affects cross-domain knowledge transfer. The more alike
two domains are, such information will be more useful for
transfer. Fig.1(d) and 1(h) show the influence of content
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Figure 2. Performance on real-world data.

information. The more alike between generations (a smaller
feature bandwidth), the more helpful content information
will be. In general, trHLSH outperforms trLS, HLSH,
whereas LS is less preferable to the others.

B. Real-world Data

We also evaluate our proposed model in real-world data
crawled from Facebook and Twitter. We crawled 1482 posts
from Facebook as the target domain and 1587 posts from
Twitter as the source domain of 10 same major news
agencies including CNN, BBC, Associated Press, the New
York Times , the Wall Street Journal, Washington Post, etc.
We divide Facebook dataset into 70% and 30% as training
and testing datasets, respectively.

The textual contents are represented by bag-of-words.
We extract 2000 most frequent words as features. Then
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Figure 3. Network Structure learned from Facebook and Twitter, respec-
tively.

we apply a simple principal component analysis (PCA) for
dimensionality reduction. Eventually we obtain the features
with the first 200 principle components.

After that, we train our model and the baseline models on
the training dataset. In addition to the three baseline models
tested on synthetic data, we include two more baselines in
this experiment:

• SparseLowRank [9]. A nuclear and `1 norm of
infectivity matrix is imposed to the general Hawkes
process, which takes into account the prior knowledge
of sparse and low-rank structure in social networks.

• GrangerCausality [11]. This model replaces the
commonly used exponential decay kernels with a series
of Gaussian basis functions, which can flexibly capture
the mutual influences.

We evaluate the trained models on the test dataset, in
terms of the RMSE of predicting the next arrival time and
the negative log likelihood NegLogLik of the test dataset.
The results are shown in Fig. 2. It can be seen that trHLSH
outperforms the baselines in both metrics. It has the lowest
RMSE on predicting next arrival time, and also the lowest
NegLogLik. This result validates that content and cross-
domain information are instrumental in improving predictive
performance of Hawkes processes. The network structures
learned from Facebook and Twitter are presented in Fig. 3.
Some similarities can be seen between the two graphs.

VI. CONCLUSIONS

In this paper, we present a novel model that organically
leverages temporal, content and cross-domain information.
The proposed model augments the basic Hawkes process
by taking into account features associated with events and
transferring the network structure inferred from a source
domain. The trHLSH can be learned efficiently by quadratic
programming, which enjoys many computational merits. The
experiential results on both synthetic data and real-world
data crawled from Facebook and Twitter suggest that our
model has a better performance than the baseline models in
terms of network structure recovery and prediction.
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